The Ice Contamination Ratio Method: Accurately Retrieving Ocean Winds Closer to the Sea Ice Edge While Eliminating "Ice Winds"

David Long

Department of Electrical and Computer Engineering Brigham Young University 12 June 2012

IOVWST Meeting

QuikSCAT Swath and Polar Ice

Comparison to NCEP Winds

 Evidence of "Ice Winds" from RMS wind speed difference between NCEP (or ECMWF) and QuikSCAT.

8 million WVCs / year

Problem and Motivation

- Satellite Scatterometers accurately measure ocean winds but can suffer from contamination from nearby sea ice
 - Sea ice backscatter is much brighter than ocean backscatter
 - Sea ice in the main lobe or nearby sidelobes biases the ocean backscatter measurements
 - Can result in erroneously high wind speeds -- "Ice Winds"
 - To avoid, processing within 50 km of ice edge discarded
 - Throws a lot of data away
 - Ice winds still occur due to fast moving ice
- Want to eliminate ice winds and estimate winds closer to sea ice edge
 - Adapt proven "land contamination ratio" approach for sea ice

SeaWinds on QuikSCAT

- SeaWinds is commonly referred to by its platform QuikSCAT
- Dual polarization, scanning pencil beam spaceborne scatterometer
- Transmits and receives at 13.4 GHz
 - VV at 54.1° incidence angle
 - HH at 46° incidence angle
- Measures normalized backscatter crosssection (σ⁰) at (up to) four "looks"
 - Vpol fore
 - Vpol aft
- Inner/outer swaths
- Hpol fore
- Hpol aft
- High resolution images are created using the SIR algorithm

QuikScat Wind Overview
Conventional and UHR $\sigma_{Obs}^0 = \sigma_{true}^0 (1 + \eta K_p)$ 2.5 kmUHR-AVE Algorithm

Ice Contaminated Winds

- Sea ice in/near mainlobe of response causes sigma-0 contamination
- Goal: detect and reject contaminated slices.

Contaminated Wind Speeds

Ice Contribution Ratio

ICR Processing for Identifying and Discarding Ice Contaminated Measurements

ICR Estimation

Constructing Observational PMFs $P(\sigma_{Obs}^{0}|ice)$ and $P(\sigma_{Obs}^{0}|ocean)$

Observation Probabilities

 $P(\sigma_{Obs}^{0}|ocean)$

 $\sigma_{Obs}^{0}|ice)$ P

Note: Example PMF from DOY 228-243, 2004 UHR sigma-0 (avewr) data Actual PMF's generated in the four dimensional measurement space

Ice Prior Generation

 Ice prior is generated by averaging operational QuikSCAT ice masks within a local sliding time window. Window length of 23 days is used here.

Computed Posterior Probability $P(ice|\sigma_{Obs}^{0})$

ICR Algorithm (tests individual sigma-0 for sea ice contamination)

Monte Carlo Simulation

$$\boldsymbol{\sigma}_{\text{Sim}}^{0} = \left[\text{ICR}\boldsymbol{\sigma}_{\text{ice}}^{0} + (1 - \text{ICR})\boldsymbol{\sigma}_{\text{ocean}}^{0} \right] \left(1 + \eta K_{p} \right)$$

Simulation parameters:

- ICR
- wind
- ice backscatter
- cross track location
- 1500 simulated winds for each parameter set
- RMS error computed

 $\eta \sim N(0,1) \longrightarrow 1500$ Realizations

$$\boldsymbol{\sigma_{\mathrm{Sim}}^{0} \longrightarrow \mathrm{GMF}_{w}^{-1} } \rightarrow \hat{\mathbf{w}}_{\mathrm{Sim}} \qquad \qquad \boldsymbol{\varepsilon}_{\mathrm{RMS}} = \sqrt{\frac{\sum_{i=1}^{1500} \left(\|\mathbf{w}\| - \|\hat{\mathbf{w}}_{\mathrm{Sim},i}\|\right)^{2}}{1500}}$$

Thresholding

Simulation Results

ICR Algorithm

Case Study December 15, 2004

Contaminated HR Wind Speed (m/s)

ICR Processed HR Wind Speed (m/s)

Case Study

Location: South of Africa

October 8, 2000 Case Study

Location: East of the Drake Passage Wind Speed (m/s)

Validation Metrics

Stand-off Distance (SOD)

1)

 $SOD = mean(d_1, d_2, \dots, d_N)$

2) Relative Error – Compares against National Center for Environmental Prediction (NCEP)

$$\mathcal{E}_{\text{rel}} = \frac{\mathcal{E}_{\text{ICR}} - \mathcal{E}_{\text{Ice Free}}}{\mathcal{E}_{\text{Ice Free}}}$$

Wind Speed (m/s)

2000/2004 Metric Validation

Metric	Set	UHR	25 km	L2B
SOD (km)	Antarctic 2000	22.7	22.8	57.9
	Antarctic 2004	22.9	23.1	64.7
	Arctic 2000	22.1	22.2	38.7
	Arctic 2004	22.0	21.8	37.2
$\epsilon_{ m rel}$ (%)	Antarctic 2000	21.7	18.1	31.6
	Antarctic 2004	30.4	27.3	34.3
	Arctic 2000	16.5	20.6	31.2
	Arctic 2004	21.9	26.7	40.0

100,000 wvcs for 25 km & L2B, 1 million wvcs for UHR

2008 Wind Distributions

Antarctic Wind Probability Distributions

10

5

15

Wind speed (m/s)

20

Data set 1

Data set 2 Data set 3

Data set 4

25

30

5133 revs, 4 million wvcs

Conclusion

- New ICR processing retrieves wind an average of 22.5 km (Antarctic) 15.9 km (Arctic) from sea-ice edge
 - Improvement from original 50 km ice-edge masked winds
- ICR processing improves wind estimate integrity in regions of possible sea ice
 - Eliminates so-called "Ice Winds"
- ICR processing applied to Arctic and Antarctic regions
 - Augmented L2B product (only near-ice regions modified)
 - UHR near-ice product (new)
- Plan to apply to ASCAT and OSCAT in near future
- Journal paper currently in review:
 - W.J. Hullinger and D.G. Long, "Mitigation of Sea Ice Contamination in QuikSCAT Wind Retrieval", *IEEE Transactions on Geoscience and Remote Sensing*, in review, 2012

Backup Slides

Overview

- Brief review of QuikSCAT wind retrieval
- Ice Contribution Ratio (ICR) Measurement Model
- ICR Calculation
- ICR Threshold Determination
- Case Studies
- Performance Analysis
- Conclusion

Metrics using Various Priors

Res.	Set	5 day	11 day	17 day	23 day	L2B
2.5 km	Antarctic 2000	20.1	21.5	22.3	22.7	-
	Antarctic 2004	19.7	21.1	22.3	22.9	-
	Arctic 2000	19.6	21.0	21.6	22.1	-
	Arctic 2004	20.1	21.0	21.8	22.0	-
25 km	Antarctic 2000	20.5	21.9	22.6	22.8	57.9
	Antarctic 2004	20.4	21.5	22.7	23.1	64.7
	Arctic 2000	19.9	21.1	21.6	22.2	38.7
	Arctic 2004	19.9	20.9	21.7	21.8	37.2

Stand-off Distance (m)

	Res.	Set	5 day	11 day	17 day	23 day	L2B
		Antarctic 2000	27.1	26.0	24.7	23.7	-
	2.5 km	Antarctic 2004	36.9	34.0	31.4	30.4	-
		Arctic 2000	15.1	15.3	15.6	16.5	-
		Arctic 2004	21.7	22.6	21.8	21.9	-
		Antarctic 2000	19.7	18.1	18.4	18.1	31.6
Relative Error (%)	25 km	Antarctic 2004	30.0	30.0	27.5	27.3	34.3
		Arctic 2000	17.3	17.3	19.0	20.6	31.2
		Arctic 2004	24.6	24.8	25.2	26.7	40.0

Effect of Ocean Prior

ICR Processed Winds (m/s)

-800 -400 0 400 800 -800 -400 800 -800 -400 0 400 800 -800 -400 0 400 0 400 km km km km

-750

800